High-breakdown estimation of multivariate mean and covariance with missing observations.

نویسندگان

  • Tsung-Chi Cheng
  • Maria-Pia Victoria-Feser
چکیده

We consider the problem of outliers in incomplete multivariate data when the aim is to estimate a measure of mean and covariance, as is the case, for example, in factor analysis. The ER algorithm of Little and Smith which combines the EM algorithm for missing data and a robust estimation step based on an M-estimator could be used in such a situation. However, the ER algorithm as originally proposed can fail to be robust in some cases, especially in high dimensions. We propose here two alternatives to avoid the problem. One is to combine a small modification of the ER algorithm with a so-called high-breakdown estimator as the starting point for the iterative procedure, and the other is to base the estimation step of the ER algorithm on a high-breakdown estimator. Among the high-breakdown estimators which are actually built to keep their robustness properties even if the number of variables is relatively large, we consider here the minimum covariance determinant estimator and the t-biweight S-estimator. Simulated and real data are used to compare and illustrate the different procedures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preferred Robust Response Surface Design with Missing Observations Based on Integrated TOPSIS-AHP Method

- Missing observations occur in experimental designs as a result of insufficient sampling, machine breakdown, high cost, and errors in the measurements. In nanomanufacturing, missing observations often appear in designs because the combination of factors or molecular structures selected by a designer cannot be experimented successfully. In the current paper, Box-Behnken and face-centered compos...

متن کامل

High-Breakdown Robust Multivariate Methods

When applying a statistical method in practice it often occurs that some observations deviate from the usual assumptions. However, many classical methods are sensitive to outliers. The goal of robust statistics is to develop methods that are robust against the possibility that one or several unannounced outliers may occur anywhere in the data. These methods then allow to detect outlying observa...

متن کامل

Minimax rate-optimal estimation of high-dimensional covariance matrices with incomplete data

Missing data occur frequently in a wide range of applications. In this paper, we consider estimation of high-dimensional covariance matrices in the presence of missing observations under a general missing completely at random model in the sense that the missingness is not dependent on the values of the data. Based on incomplete data, estimators for bandable and sparse covariance matrices are pr...

متن کامل

Likelihood Estimation with Incomplete Array Variate Observations

Missing data present an important challenge when dealing with high dimensional data arranged in the form of an array. In this paper, we propose methods for estimation of the parameters of array variate normal probability model from partially observed multi-way data. The methods developed here are useful for missing data imputation, estimation of mean and covariance parameters for multi-way data...

متن کامل

Transposable Regularized Covariance Models with an Application to Missing Data Imputation.

Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable, meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal, in which the rows and columns each have a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The British journal of mathematical and statistical psychology

دوره 55 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002